System Management CSCI
Redundancy Management CSC
Thor DP3 Part 1

December 18, 1997
Thor DP3.0

Table of Contents

1. Redundancy Management CSCcooiuii i iiee et ertie ettt et e st e sate e sabe e sbe e e sbe e e sbeeesateesabessnreeanees 1
1.1 Redundancy Management CSC INEFOAUCTIONeiiiiiiiiiieiie e iee et sabe e 1
1.1.1 Redundancy Management CSC OVEIVIBIVccocueiaueiaiiierieeeiee ettt e sbe e sbee e saee e saneesreeeees 1
1.1.2 Redundancy Management CSC Operational DesCription..........ccooeieiiieiieniienenieee e 2
1.2 Redundancy Management CSC SPECifiCaliONS........ccccueiiiiiaiiieiiie et 3
1.2.1 Redundancy Management CSC GroUNArUIES............cooiuieiieiiiiieiie et 3
1.2.2 Redundancy Management CSC Functional ReqQUIrEMENTS...........occuvriiieieiiiin e 4
1.2.3 Redundancy Management CSC Performance ReqUIremMeNtS...........oooueeiieeiierenieeesieesiee e 8
1.2.4 Redundancy Management CSC Interfaces Data Flow Diagrams...........cccoeevieeineeenieenieencieeee 8
1.3 Redundancy Management CSC Design SPeCifiCalioN.oouieiieiiiiiiiii et 9
R R = B 1011 o] TR RP RO 9
1.3.2 SYSIEM INEEOIITY ...ttt ettt sh et e ettt ebe e e ebee e sabe e sabe e e be e e sane e smbeesnbeeenees 9
1.3.3 SUBDSYSEEM INEEOITTY . ..eeeteieieie ettt ettt ettt et b e sbe e e sab e e st e e e be e e sane e sabeesnbeeeaees 9
1.3.4 COMPULET TNEEGIITY ... ceiteeeieeeeietee ettt ste ettt e et e e sbe e e sat e e st e e sbe e e rbe e e sabeesabeesabeeaabeeesnseesnbeaas 15
1.3.5 System Configuration Table.........c.oii i 15
System Management CSCI i 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

Table of Figures

Figure 1. Redundancy Management Conceptual Data Flow Diagram............cccooueriieiiniieniee e 2
Figure 2. Logical Redundancy Management Organi Zation..............ccoceearererieerieeniee e esies e 2
FIQUrE 3 - SCT Class SIIUCTUN ©.....cooeiieeie ettt ettt et e sabe e st e e e be e e ebe e e sate e sabeasnbeeenees 7
FIQUrE 4 - RM CSC DEIAFIOW ...ccuitiiiiiieieie ettt ettt ettt e be e e be e e ebe e e sabe e snbe e smreeenees 9
Figure 5 - System Configuration Table Data FIOWcoiiiiiiiiiiii e 16
Figure 6 - SCT APL HIErarChYooiie ettt sae e saee e b 17
Figure 7 - SCT CONLAINGT SEIUCLUIE.coiteieuieeieieeateeeeteeesteeesueeesebe e bt e s sbeeesbeeesaeeesabeesabeesbeeaaaeeesaseesnseaans 18
Figure 8 - SCT ODJECE INNEITTANCE.eiiitiieitie ettt ettt et sabe e st e e s be e e sbee e saeeesareaans 19
System Management CSCI ii 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

1. Redundancy M anagement CSC

1.1 Redundancy Management CSC Introduction

1.1.1 Redundancy M anagement CSC Overview

Release Notes:

The Redundancy M anagement CSC isbeing delivered in two dropsfor Thor. Thefirst drop is
scheduled for mid-January and consists of executing SCT APIsfor alocal computer, and stub
SSI APIs. The second drop contains full Thor functionality. Thisdocument focuses on the
interface definition (APIs) to ensurethat other CSCls can meet their deadlines. Internal design
and documentation of that design will be discussed at a second Thor DP3.

The Redundancy Management CSC monitors, and maintains the health of the RTPS. It doesthis by
monitoring the health of both the software and hardware in the system. If failures are detected and a
recovery mechanismisin place, Redundancy Management implements the recovery. All failures cause
generation of a System Message.

Redundancy Management also manages the RTPS Test Set. The configuration of this Test Set is
reflected in the System Configuration Table (SCT) during operations. This table specifies the hardware
and software configuration, both logical and physical. The SCT specifies the resources allocated to Test
Sets, which then support specific Activities. The static portion, and initial values for much of the dynamic
part of the SCT are generated off-line and loaded by Redundancy Management into memory at
initialization. Redundancy Management maintains the dynamic portion of the table and makes all data
available to displays and other applications.

Subsystems ccP
Gateways ‘ A
State SCT

Subsystem Integrity/Computer Integrity Application & System Services

- Generate Health Counter -System Message Services

- Collect Health Data -Network Services)

- Collect Performance Data -Inter-App Communication Services

H&S - Relay Subsystem State
Application & System Services - Update Local SCT
-System Message Services
-Network Services
-Inter-App Communication Services
System Integrity (Master CCP Only)
-Report Failures -Maintain master SCT
Subsystem Integrity/Computer Integrity
- Generate Health Counter
- Collect Health Data
- Collect Performance Data
- Relay Subsystem State Subsystem Intelgrrllty/Computer Integrity Application & System Services
- UPdate Local SCT) - Gelrllerate H?Et Counter -System Message Senvices
- Provide Performance Data to Display - Collect He;t Data Network Services
A ‘ - Collect performance Data -Inter-App Communication Services
State SCT - Relay Subsystem State
| A 4 SCT, H&S - Update local SCT
Subsystems + A T
State SCT
System L v
Status
Subsystems
Displays Y DDP
CCws
System Management CSCI 1 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

Figure 1. Redundancy M anagement Conceptual Data Flow Diagram

1.1.2 Redundancy Management CSC Oper ational Description

As shown in Figure 2, Redundancy Management is composed of five parts: Set Integrity, System Integrity,
Subsystem Integrity, Computer Integrity and System Configuration Table. Each Integrity monitors the
integrity of its parts and reports the results of this analysis to ahigher level. The collected integrity is
reflected in the SCT.

Parts of the Redundancy Management CSC execute in the DDPs, CCPs, CCWSs, and the Ops/CM Server.
Subsystem and Computer Integrity equivalents execute in the Gateways, but are not part of this CSC. Set
Integrity executes in the Set Master CCWS. The SCT is available to any computer that executes any part
of the Redundancy Management CSC.

Computer Integrity executes in each Computer, monitors the health and status of the computer, and
records standard hardware performance data. It makes the health data available to any local Subsystem
Integrity operation. Both the health and performance data are provided to System Integrity.

4’] Set Integrity |%

_ System
System Integrity Configuration
f Table
Subsystem
Integrity
Computer

Integrity

Figure 2. Logical Redundancy M anagement Or ganization

Subsystem Integrity executes in each Subsystem and uses the Computer health and information provided
from applications in the Subsystem to generate Subsystem Health and the Health Counter FD. This health
and status report is provided to System Integrity. Using a combination of the Health and Status report and
information from other subsystems, System Integrity makes a determination on the health of the
Subsystem. Any changes in the health and status are recorded in the System Configuration Table, which
is viewable on the System Status Display.

Based on collected data, System Integrity determines the health of each subsystem and keeps the SCT
current. It also provides genera health of the Test Set to Set Integrity. System Integrity executes in the
Set Master CCP.

System Management CSCI 2 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.2 Redundancy M anagement CSC Specifications

1.2.1 Redundancy M anagement CSC Groundrules

Definitions
An Activity is anamed operation performed as part of atest. It may consist of lower level
Activities.
Computer is defined to be a physical box that contains one or more CPUs or Processors
Computers communicate with other Computers over the Network

Any peripheralsin the same physical box such as a disk drive, memory, cards are
also considered to be part of the Computer.

CPU and Processor are used interchangeably to refer to actual compute engine of a computer.
Many modern Computers have more than one CPU.

Role: Active or Standby. In some cases Hot Spare may be considered arole, and certain
configurations may have other unique roles.

State: (In Configuration, Loaded, Communicating, Go, In ORT)

Group: acollection of computers that cannot be logically separated, and are therefore
assigned to single test set. Thisis also known as a Control Group

Redundant subsystems are actually composed of two Subsystems, one designated as active, one
designated as standby. In this document, Subsystem refers to the Active or Standby Subsystem, not
the combined pair.

Executable code with an API is provided for the CCPs, DDPs, CCWSs, and Ops/CM Server. This
replaces the Application Services provided API identified in the System Integrity thread.

Dependencies:

- ldeally, System Integrity will reuse Data Fusion and Constraint Management software to build
failure data from health and status information.

- Interface for generation of System Messages (System Services)

- OPS/CM will ensure that the correct SCT data set is downloaded to the computer prior to
initializing SCT software.

- ITS Software must register processes with Subsystem Integrity as they are initiated and
terminated.

- Each system process must generate a heartbeat

- Each user application process must generate either an heartbeat, or an Application Health
Counter FD.

External Interfaces:

- Gatewayswill supply FDs as required by System Integrity.

- Redundancy Management will generate the following System Status FDs:
SCCnnHC CCPnn Health Counter
SCCnnPRMMR CCPnn, Process MM is Running
SCCnnPRmmF CCPnn, Process MM failed
SCCssSSTAT CCP Subsystem ssis Communicating
SDDnnHC DDPnn Health Counter
SDDnnPRmMmMR DDPnn, Process MM is Running
SDDnnPRmmF DDPnn, Process MM failed

SDDsSSTAT DDP Subsystem ss is Communicating

SWnnnHC CCWSnnn Health Counter
System Management CSCI 3 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

SWnnnPRmmR CCWSnnn Process mmis Running

SWnnnPRmmF CCWSnnn Process mm failed

SWShnnSTAT CCWShnn is Communicating
System Messages

Missed Heartbeat

Computer State Change

Subsystem State Change

Thor will be delivered in two parts, an informal drop with group 2 (scheduled for 1/20), with afull
drop in Group 8 (4/20).

Group 2 Content:
Stub APIsfor SSI Registration, Heartbeat and Error Reporting
Theintent isto provide APIsthat alow the uses to correctly code their software.
These APIs return no data, so stub implementations do not need any functionality
underneath.
Locally operating APIs for the System Configuration Table.
The interfaces will execute and return data from the local copy of the SCT. The
local copy will be static unless updated on the local machine through APIs. Any
changes made to the local copy through the API will affect the SCT on that
processor only.
An offline tool to generate the System Configuration Table
Thiswill be a Microsoft Access Database. Table editors will be available as will an
export routine to make the information available to the processors.
Group 8 Content (Full Thor Content):
The SCT is maintained across the system.
SSI Interfaces function, with datarelayed to S
Sl reports failures, but takes no action in response to failures
Improved Access interface

1.2.2 Redundancy M anagement CSC Functional Requirements

GO WNPEF

The functional requirements for System Integrity are arranged in the following major functions:
Set Integrity

System Integrity

Subsystem Integrity

Computer Integrity

System Configuration Table

Set I ntegrity

St Integrity provides the equivalent of System Integrity, but for all Test Setsin the system and
any computers not currently assigned to a Test Set

System Integrity

System Integrity evaluates the operations on computers and subsystems. It provides data for
display at the System Status Display, and reports any errors or failures as System Messages.
When automatic recovery such as switchover is possible, it determines when to recover and
directsthe recovery.

21 System Integrity will be a Redundant Subsystem
22 There will be one System Integrity Redundant Pair in each Test Set.
23 System Integrity will execute in the Test Set Master CCP.

System Management CSCI 4 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

24

25

2.6

2.7

2.8

29

2.10

211

212

213

214

If the received Subsystem Health Counter contains the next expected value and current
State of the Computer is Go, no change will be made to the SCT. Note that the next
expected value will typically be 1 greater than the current value, but it may be arollover.

If the received Subsystem Health Counter contains a value other than the next expected
value, a Missed Health Counter System Message will be generated.

If the received Subsystem Health Counter contains a value other than the next expected
value, the Computer on which the subsystem executes will be placed in aNo Go state.

If an expected Health Counter is not received, the Computer on which the Subsystem
executes will be placed in aNo Go State. Note that the missing Health Counters must
be detected without receiving a packet from the computer.

If a Computer is placed in aNo Go State, all Subsystems on the Computer will be placed
inaNo Go State.

If a Computer is placed in aNo Go State, a Computer State Change System Message
will be generated.

Upon receipt of a Subsystem Health Message, System Integrity will update the SCT to
reflect any changes in the state of the subsystem.

If a Subsystemis placed in aNo Go State, a Subsystem State Change System Message
will be generated.

System Integrity will use data other than the Subsystem Health Message and Subsystem
Health Counter to determine the Subsystem Health.

If an Active Redundant Subsystemis placed in a No Go Sate, System Integrity will
trigger the Standby Subsystem to transit to the Active Role.

If a subsystemis put in No Go state, the subsystem will be commanded to terminate.

3 Subsystem Integrity

Subsystem Integrity monitors the health and status of the hardware and software that
composes a subsystem. As processes come up, they register with Subsystem Integrity
and begin supplying a periodic heartbeat. Subsystem Integrity monitors the heartbeat to
ensure that each registered application is still cycling. Subsystem Integrity also provides
amechanism for processes to report errors. Based on the status processes as determined
by the heartbeat and any error reports, Subsystem Integrity makes a determination on
the health of the subsystem. The primary health indicator used to report the subsystem
health is the Subsystem Health Counter. Aslong as the subsystemis hedlthy, the
counter is periodically incremented and published as an FD. If the subsystemis
determined to be unhealthy, the Health Counter is published, but not incremented.

31 Subsystem Integrity will provide an API to allow processesto register the process and
specify its minimum rate.

3.2 Subsystem Integrity will automatically register processes that issue an Application
Health Counter FD.

33 When a process register s, Subsystem Integrity will assign the process a CLCS Process
Number and generate a*“ Process is Running” FD containing the mapping between the
Process name and the CLCS Process number.

34 Subsystem Integrity will provide a Heartbeat API to alow the those processes that
registered through the API to check in periodically.

35 If aregistered Process failsto check in at its specified minimum rate, System Integrity
will generate a Process Failed FD. This check in can be either through the API or
through continued Application Health Counter FDs.

3.6 A subsystem is considered healthy under the following conditions:

3.6.1 Eachregistered process is generating a heartbeat, and

3.6.2 All critical processes have registered, and
System Management CSCI 5 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

3.7
3.8

39

3.10

311

3.12

3.13
3.14

3.15

3.6.3 No Fatal Errors have been reported by the processes in the subsystem, and
36.4 TBD

Subsystem Integrity will periodically issue a Health Counter FD.

The first Health Counter FD will be issued when Subsystem Integrity has finished its
own initialization.

If the Subsystem is healthy, Subsystem Integrity will increment the Health Counter FD
prior to issuing it. Note that thisincrement may result in arollover.

If the Subsystem is not healthy, Subsystem Integrity will not increment the Health
Counter FD prior to issuing it.

Multiple Subsystems on a single computer will be supported. The intent of this
requirement isto allow for a combined CCP/DDP in an IDE.

Subsystem Integrity will provide an API that allows a processto record errors detected
by the process.

All errors reported will be forwarded as Process Error System Messages

If a Process designated by the SCT as Critical Fails, Subsystem Integrity will publish a
Go System Event Code set to 0.

All changes to the SCT will be recorded in the SDC.

4 Computer Integrity

Computer Integrity monitors each computer and relays the health of the computer to System

Integrity.
4.1

4.2

Only one copy of Computer Integrity will execute on a computer regardless of the

number of subsystems executing on that computer.

Computer Integrity will provide the following performance data periodically.

42.1 Average percent CPU Utilized over the period

4.2.2 Average percent memory available over the period

4.2.3 Network throughput during the period per unit time for each network to which
the Computer is attached.

4.2.4 Network interrupts received during the period per unit time for each network to
which the computer is attached.

425 Number of Network Errors since Go for each network to which the computer is
attached.

4.2.6 Averagedisk utilization during the period.

4.2.7 Number of disk accesses

4.2.8 Number of Disk Errors

5 System Configuration Table

The System Configuration Table provides alogical and physical map of the Set. Within a Test set,
the data is constrained to the computers and subsystemsin the Test Set. A systemwide SCT is
maintained for Set Master operations. Figure 3 provides an illustration of SCT data and relationships
within and external to the SCT.

System Management CSCI 6 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Set

Execute

<>—J Test Set

Executes

Is Using

#Name: String

Is Allocated

S Constrains

Specifies

#Name: String
#Connects to: Device List

Resource

#Name: String

1.

Requires
Activity
Requires #Name
Requires
Executes on Subsystem

#Host Name: Host Name Type
#Reference Designator: String

Is attached to

I

External Interface

—@
Computer

#Serial Number: Serial_Number_Type

corresponds to

Figure 3 - SCT Class Structure

PN

#Name: Subsystem_Name_Type
#Role: Role_Type

#State: Subsystem_State_Type
#Switchover Enabled: Boolean

-Recovery Code: Integer

Process

C&C
Workstation

#Name: String
#Critical: Boolean
#State: Process State

Bold items are defined in a different 5.x requirement

51

The file-based initialization data for the System Configuration Table will be

independent of a particular TCID and/or SCID except in the case where the SCT file
format varies across the set of SCIDs to be loaded.

52

retrieve SCT data

53
531
532
533
54
54.1
54.2
54.3
54.4
55
551
55.2
55.3
554
555
55.6
55.7
55.8
System Management CSCI
Redundancy Management
Version Thor DP3.0

The Name of the Set

The Test Sets that make up the Set
The logical Resour ces that make up the Set.

Host Name/Alias (i.e., lcc_gw_gsel)

Reference Designator (i.e.,
Physical Computer

Name

130A1)

Attached External Interfaces

Groups alocated to the Test Set
Groupsin use by the Test Set
The Hostname of all Resourcesin the Test Set.
CCWS Resour ces dlocated to the test set

CCWS Resour cesin use by the Test Set

The Subsystemsin the Test Set
Gateway Subsystems defined for the Test Set.

7
CSC

The SCT will make the following data available for each Test Set

The Redundancy Management CSC will provide an API to alow other applicationsto

The System Configuration Table will make the following data available for each Set:

The SCT will make the following data available for each logical Resour ce:

12/15/972:35 PM

5.6

57

58

59

5.10

511

The SCT will make the following data available for each External Interface

56.1 Name(i.e, GSE, LDB)

The SCT will make the following data available for each physical Computer

57.1 Seria Number

The SCT will make the following data available for each Group:

581 Name

5.8.2 Type (eg., Control Group, Front End Zone)

5.8.3 The Resour ces assigned to the Group

The SCT will make the following data available for each Subsystem:

59.1 Name(i.e, GS1A, GS1S)

5.9.2 Roale(i.e, Active, Standby, Hot Spare)

5.9.3 State(e.g., In Configuration, Platform Initialized, SCID Initialized, L oaded,
Communicating, Go, In ORT)

5.9.4 Resour ce on which the Subsystem is executing

The SCT will provide an API to allow the a modification to the Resource on which a

Subsystem executes.

SCT changes will be recorded in the SDC.

1.2.3 Redundancy Management CSC Perfor mance Requir ements

1 Set I ntegrity

- None

2 System Integrity

21

System Integrity will detect a missing Computer Heartbeat message within 1 cycle of the
expected arrival time.

This means that if the HB is scheduled for frequency of 10ms, that Sl will detect the
missing packet within 10ms of its expected arrival time. With afailure declared at two
missed cycles, this allows for a maximum 30ms detected failure time: If the failure
occurs immediately following a heartbeat, 10ms elapses before the first HB is not
generated, 10 more before the second is not generated, 10 more before Sl realizes that
two have been missed. In order to not declare false alerts, and allow for network delays,
Sl will probably be scheduled to look for the HB somewhere late in the cycle.

3 Subsystem Integrity

31
3.2
3.3
34

On Active CCPs and DDPs, the Health Counter FD shall be issued at the SSR.
On Standby CCPs and DDPs, the Health Counter FD shall beissued at 1 Hz.
On CCWSs, the Health Counter FD shall be issued at the DSR.

On CCPs, DDPs, and CCWSs, Status FDs shall be issued at 1 Hz.

4 Computer Integrity
41 All performance data shall be produced at 1 second intervals.

5 System Configuration Table

51 Correct System Configuration data will be provided to an API user within TBD ms of the API
invocation. The intent of this requirement is to allow distributed maintenance of the SCT if
performance constraints permit.

52 A change in the SCT will be visible on all processors within 10 ms of the change.

1.2.4 Redundancy Management CSC Interfaces Data Flow Diagrams

This section describes the interfaces to the RM CSC.

System Management CSCI 8 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Subsystem CSCl s provide application health data and can read the SCT as required. The provided
health datais used in subsequent SCT updates.

Ideally, RM will use both Data Fusion and Constraint Management to detect failures in the system.
Exact use of these capabilities will be examined in the design phase.

System Integrity uses System Servicesto deliver system messages that notify operators of subsystem
failures.

Status is visible to operators through System Viewers that can extract data from the SCT.
Theinitial values for the SCT are provided through file(s) exported from Microsoft Access.

System
Viewers

’—b

| Set Integrity

System Senvices

-System Message T
Senvices
System
System Integrity Configuration
f Table
Subsystem
Integrity
Com pl_Jter COTS
Subsystem Integrity Office Tool
CSCls

[] Extemnal Interfaces

Figure4 - RM CSC Data Flow

1.3 Redundancy M anagement CSC Design Specification

As discussed above, the Redundancy Management CSC consists of 5 major parts. Each of these parts are
discussed separately below.

1.3.1 Set Integrity
Set Integrity is not provided in Thor.

1.3.2 System Integrity
System Integrity design will be specified in part 2 of the Thor DP3.

1.3.3 Subsystem Integrity
Release Notes: For thefirst drop of Thor, the APIs are available for use, but are stubbed out.

System Management CSCI 9 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Subsystem Integrity monitors a single computer. Subsystem Integrity uses both application and hardware
level information to produce a summary status for the computer. This summary statusis provided to
System Integrity asthe Health Counter FD. Other Subsystem health datais also provided as FDs.
Information used to generate the FDs comes from a number of sources, including system services, system
processes, and FDs generated by applications.

1.3.3.1 Subsystem Integrity Detailed Data Flow
1.3.3.2 Subsystem Integrity External Interfaces
1.3.3.2.1 CSC Name Message Formats
TBD

1.3.3.3 Subsytem Integrity Display Formats
This CSC produces no displays

1.3.3.4 Subsystem I ntegrity I nput Formats
All inputs are provided through the API.

1.3.3.5 Subsystem I ntegrity Recorded Data

1.3.3.6 Subsystem I ntegrity Printer Formats
This CSC does not print anything.

1.3.3.7 Subsystem Integrity I nterprocess Communications
TBD

1.3.3.8 Subsystem Integrity External Interface Calls
Subsystem Integrity provides the following Application Programming Interfaces:

1.3.3.8.1 Class SSIProcess

The SSIProcess Class provides a service to allow Initialization and Termination Services the capability to
register a process that they are to create. It also alows deregistration of processes that are to be
terminated normally.

1.3.3.8.1.1 Specification
class SSlProcess

{
SSIProcess (string Name, int PID);
virtual void Complete ();
~SSIProcess ();

H

1.3.3.8.1.2 Process

The constructor for the Process class accepts the name of the processing being initiated and the OS
Process ID. Thisinformation is used to match the initiated process with the process providing a heartbeat.

System Management CSCI 10 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.1.2.1 Definition
SSIProcess (string Name, int PID)

Arguments:
Nameis auser supplied string. It should match the name supplied by Process when it creates a Heart
Class, or name that will be available through the application health counter.
PID isthe UNIX Process ID for the process being registered.

Return Value: N/A

1.3.3.8.1.3 Complete

The Complete method notifies Subsystem Integrity that the process created by the constructor should no
longer be monitored. This interface should only be invoked if there is normal termination of the process.
ITS must invoke this method prior to terminating the process so that no race condition is generated for a
missed heartbesat.

1.3.3.8.1.3.1 Definition
void Complete();

Arguments: N/A
Return Value: N/A

1.3.3.8.1.4 ~SS|Process

The destructor cleans up the memory allocated in Subsystem Integrity as well as that in the application
program space.

1.3.3.8.1.4.1 Definition
~SSIProcess();

Arguments: N/A
Return Value: N/A

1.3.3.8.1.5 Example
SSIProcess * ApplProcess, /I declare a pointer to a process

/I fork process - returns PID
ApplProcess = new SSIProcess(ApplName, PID); // register the process

/I later, determine that the process should end.

Appl Process.Complete(); /I Tell SSI not to worry about it
kill Process; /I get rid of it
delete ApplProcess, /I destroy the object instance.

1.3.3.8.2 Class SSICounter

System Management CSCI 11 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

SSICounter

+SSICounter()
+Increment(): void

+~SSICounter()

A

SSIProcessHeart

+SSIProcessHeart()
+Beat()
+~SSIProcessHeart{)

The Counter Class provides an interface for data collection. Instances of the counter, declared in
application programs, can be monitored by Subsystem Integrity. As specific metrics are identified, it is
expected that this class will be further subclassed.

1.3.3.8.2.1 Specification

class SS| Counter

{
SSICounter (string Name);

virtual void Increment (int by =1);
~SSI Counter();

H

1.3.3.8.2.2 SSICounter
The constructor creates an instance of the counter visible to both the user and to Subsystem Integrity.

1.3.3.8.2.2.1 Definition
SSICounter (string Name)

Arguments:
Name provides a unique descriptive title under which the statistics are recorded.
Return Value: N/A

1.3.3.8.2.3 Increment

The increment methods increments the counter by the amount specified in “by” . If no value is specified,
the count is incremented by 1.

1.3.3.8.2.3.1 Definition
void Increment (int by=1);

Arguments:

by specifies the amount by which the counter should be incremented. 1f no value is supplied, it will be
incremented by 1.

Return Value: N/A

1.3.3.8.2.4 ~SSICounter
This interface destroys the counter object and informs SSI that the datais no longer being supplied.
System Management CSCI 12 12/15/972:35 PM

Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.2.4.1 Definition
~SSI Counter();

Arguments: N/A
Return Values: N/A

1.3.3.8.25 Example
SSICounter DiskAccessCounter(“DiskAccesses’);

// read from disk
DiskAccessCounter.Increment();
/I or if you read and wrote...
DiskAccessCounter.Increment(2)

1.3.3.8.3 Class SSIProcessHeart

The SSIProcessHeart class provides a heartbeat for a process. Each process is expected to either invoke
thisinterface periodically, or to provide an application level Health Counter FD (not the Subsystem
Health Counter FD). For latency reasons, using the API is the preferred approach.

1.3.3.8.3.1 Specification:

class SSIProcessHeart :: private Counter

{

SSIProcessHeart (string Name, int Period, boolean Periodic);
virtual void Beat ();

~SSIProcessHeart ();

}

1.3.3.8.3.2 SSIProcessHeart

This constructor defines to Subsystem Integrity the process to monitor and its expected frequency. It aso
creates the object in local memory.

1.3.3.8.3.2.1 Definition
SSIProcessHeart (string Name, int Period, boolean Periodic);

Arguments:

- The Name argument uniquely identifies the process to monitor. The name must be unique to the
Computer. If the process was registered using the SSIProcess Object, the name must match the name
provided at that interface.

The Period specifies the period of the process in milliseconds. For acyclic processes, thisis the
maximum amount of time the process will sleep between cycles. MAXINT is considered to be
infinite. Note that a process with aMAXINT period cannot be checked for failure directly by Sl.
The Periodic boolean istrue if the processis cyclic and false if acyclic. Cyclic processes are
monitored for incrementing heartbeats. An incrementing heartbeat must increase by exactly 1 for
each period. More or lessthan 1 is considered afailure. Acyclic processes are monitored for
increasing heartbeats. The heartbeat must increase by at least one in the specified period. Increases
of more than one are not considered failures. No increaseis considered afailure.

Return Value: N/A

1.3.3.8.3.3 Beat

This procedure increments the counter. It should be invoked on every cycle of the process. If not
invoked as frequently as specified in the constructor, the process will be considered failed.

System Management CSCI 13 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.3.8.3.3.1 Definiiton
void Best()

Arguments: N/A
Return Value: N/A

1.3.3.8.3.4 ~SSIProcessHeart

The destructor destroys the object and notifies SSI that no further hearbeats will be supplied by the
process. Notethat if the process has not been unregistered by through the SSIProcess.Complete interface,
thiswill result in nofication of afailed process.

1.3.3.8.3.4.1 Definition

~ProcessHeart()
Arguments: N/A
Return Value: N/A

1.3.3.8.3.5 Example

ProcessHeart ApplHeart(“ ApplClient”, TRUE, 1000); /ICyclic 1Hz process

Il or

ProcessHeart Appl2Heart(* ApplClient2”, FALSE, 30000); //Acyclic process, will wake up at least
/130 seconds

ApplHeart.Best();

1.3.3.8.4 Class SSISoftwareError

The Software Error class provides a mechanism for an application to report an error to the local copy of
Subsystem Integrity. One instance of the class must be created in order to report errors. Subclasses can
be used as desired by the application to group error handling. All relevant application identification data
isavailable to SSI through the registration process, and does not need to be supplied through these
interfaces.

1.3.3.8.4.1 Specification:

enum ErrorType { DATA, EXECUTION, INTERFACE};
enum ErrorSeverity {INFORMATION, WARNING, ERROR, FATAL_ERROR};

class SS| SoftwareError

{
SS| SoftwareError();

virtual void Report (string ErrorName, ErrorType EType, ErrorSeverity Severity, string
ErrorData);
~SSl| SoftwareError();

}

1.3.3.8.4.2 SS|SoftwareError

The constructor creates an instance of the Error object that can then be used to report errors. Multiple
instances of Software Error can be created. The constructor also retrieves from the SCT any necessary
Process | dentification information that will be needed when errors are recorded.

1.3.3.8.4.2.1 Definition
SS| SoftwareError()

System Management CSCI 14 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Arguments: N/A
Return Values. N/A

1.3.3.8.4.3 Report
The Report method is used to notify Subsystem Integrity that an error actually occurred.

1.3.3.8.4.3.1 Definition
void Report (string ErrorName, ErrorType EType, ErrorSeverity Severity, string ErrorData);

Arguments

- ErrorName: This specifies the name to be used to track the error.
EType: Classifies the error
Severity: Aidsin System Integrity determination of the appropriate response. Specific reactions will
be defined on a case by case basis, but general use is that Information Errors are ignored by Sl.
Warning Errors will be ignored unless some threshold is received, and then used only if it appears the
warnings are localized. Exceeding a defined Error rate will result in switchover if available. Fatal
Errorswill trigger immediate switchover in critical processes.

- ErrorData: Any other data to be recorded that may aid in determining the cause of the error.

Return Value: N/A

1.3.3.8.4.4 ~SS|SoftwareError
The destructor should only be invoked as part of process termination.

1.3.3.8.4.4.1 Definition
~SSl| SoftwareError()

Arguments: N/A
Return Value: N/A

1.3.3.8.4.5 Example

SSI SoftwareError AllErrors; /I created at program start
AllErrors.Report (“FileNotFound”, DATA, ERROR);

AllErrors.Report(“InvalidCommand” ,INTERFACE,FATAL_ERROR):

1.3.3.9 Subsystem I ntegrity Table Formats

This CSC uses no tables produced by an external source.

1.3.4 Computer Integrity
Computer Integrity design will be specified in part 2 of the Thor DP3.

1.3.5 System Configuration Table

The master copy of the System Configuration Table resides on the Master CCP. Synchronized copies are
maintained on all other computers.

On each computer, the SCT isinitially built from pre-stored files, then updated based on the changes that
have been recorded at the Master CCP. The SCT is maintained in shared memory, and an API is

System Management CSCI 15 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

provided to allow the SCT users to get access to the information. The system configuration can be viewed
as atree — the Set contains Test Sets, each Test Set is a group of Subsystems, each Subsystem isa
collection of processes. The structure of the SCT, and the design of the API reflect this organization.
Iterators are provided to allow looping through the setsto extract information, shortcut “ My” objects are
also defined at each level to allow quick accessto local configuration data.

Initial creation of the SCT is through Microsoft Access tables. These tables alow much of the
configuration to be defined prior to the start of the test, then updates as the system is configured.

ubsystem
Integrity,

Health and Status FDs
Health and Status FDs System Event Codes

1.35.1 System Configuration Table Detailed Data Flow

ubsystem
Integrity

System Event Codes

Update SCT

System Event Codes

SCT

Master
Update SCT

Master CCP

Write Read Other Computer

Applications,

Figure5 - System Configuration Table Data Flow

When an application at a computer requests a modification to the SCT through the provided API, the
update request is sent to the master copy of the SCT located on the Master CCP. There, the update is
made as appropriate, and the other SCTs are updated through System Event Codes. The updated datais
then available to the application through the Read APIs. Subystem Integrity updates are handled in much
the same way. Subsystem Integrity reports health and Satus through both System Event Codes and
Health and Satus FDs. Based on thisinput, System Integrity evaluates the health of the subsystem and
updates the master copy of the SCT. These updates are relayed to all copies of the SCT through System
Event Codes.

1.3.5.2 System Configuration Table External Interfaces

1.3.5.2.1 CSC Name Message Formats
TBD

1.3.5.3 System Configuration Table Display For mats

Microsoft Access Forms are used to generate the SCT datafiles. The generic Access Table viewswill be
available for the 1/20 drops. Formatted displays will be provided in part 2 of the DP3.

System Management CSCI 16 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.4 System Configuration Table Input Formats
Input formats for the Subsystem Integrity CSC are defined by the FD Formats and the API.

1.3.5.5 System Configuration Table Recorded Data
This information will be provided at drop 2.

1.3.5.6 System Configuration Table Printer For mats
This CSC does not print anything.

1.3.5.7 System Configuration Table I nter process Communications

This information will be provided at drop 2.

1.3.5.8 System Configuration Table External Interface

This CSC provides an interface for reading data form the SCT as well as writing information into the
SCT. Theinterface is comprised of multiple objects. Asshown in Figure 6, the SCT isatree of
containers that reflects the logical configuration of the system. The Set is a collection of Test Sets, Each
Test Set contains a number of Subsystems, Resources, Gateways and Groups. Resources are attached to
external systems, and Subsystems are composed of Processes.

SCTRSet
BCTRContainerTestSqt

BCTRContainerSubsyste

Q

4CTCOntainerResourceAIIocalled S*SCTContainerResourceanIse 4CTRCOntainerGroupA|Ioca d #CTRContainerGroupan

SCTRResource

SCTRSubsyste

Q

4CTRCOmainerGatewayAIIocatLd*CTRContainerGalewayInUl;e

FCTRContainerProce4s %CTRContainerAltached*o

SCTRProces{ [SCTRAttachedT(SCTRGatewag

Figure 6 - SCT API Hierarchy

The collections are all derived from the RogueWave class of Ordered (Figure 7). While thereis no
inherent ordering of the various items, the use of the Ordered class alows searching for objects and
stepping through each of the Objects. The SCT Ordered privately inherits the Ordered class methods.
Only those methods that manipul ate the existing members of the set are exported through the SCT
Ordered class. This prohibits deletion of SCT elements through the API. No unique methods are
provided in the SCT Ordered subclasses, but the methods are redefined to allow only homogeneous sets.

System Management CSCI 17 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Figure 8 specifies the methods of each of the classes. In order to be collected, each is derived from the
RogueWave RWCaollectable class. All values in the classes are available as methods that return the
values. The GetContainer methods in each class allow retrieval of the containers as shown in Figure 6.
The methods are further specified and explained in the subsections bel ow.

RWOrdered

+find
+first
+last(

PN

SCTOrdered

+first()
+last

+find

PN

SCTRContainerGatewa] SCTRContainerGatewa

D
=]

SCTRContainerResourd BCTRContainerSubsyster

SCTRContainerTestSe SCTRContainerGroup $CTRContainerAttachedTp SCTContainerProces
SCTRSet
+GetContainef()
+MyTestSet()
Figure7 - SCT Container Structure
System Management CSCI 18 12/15/972:35 PM

Redundancy Management CSC
Version Thor DP3.0

RWCollectable

SCTCollectable

>

SCTRTestSet SCTRProcess SCTRResource SCTRSubsystem SCTRGroup
+MySubsystem() +Name() +ResidingOn() +Classification() +GetContainer
+MyResource() +Criticality() +RTCNPrimarylPAddres$() +CurrentState(+Name()
+MyGroup() +CurrentState(+Executing() +ExecutingOn
+Name() +RTCNBackuplPAddres$() +Role()
+GetContainerAllocatel() +DCNPrimarylPAddress +SwitchoverEnablefl()
+GetContainerinUse() +DCNBackuplPAddress +GetContainer()
+GetContainer() +ReferenceDesignator() +Name()

+GetContainer() +LogicallD()

+PhysicallD())\
| |

SCTRComputer SCTRGateway SCTWSubsystem

+SerialNumber() +ChangecClassification()
+ChangeCurrentState()
+ChangeName()
+ChangeRole()
+ChangeSwitchoverEnablgd()
+ChangeExecutingOn()

SCTWGateway

Figure 8 - SCT Object Inheritance

1.3.5.8.1 Class SCTRSet

The SCTRSet Class provides aread only interface for the retrieval of information visible to the Set. The
provided methods allow the user to access the Test Set object containing their personal Test Set
information as well as provides access to a container having iteration methods to cycle through all of the
test setswithin the Set. A definition of the available methods as well as examples are shown in the
proceeding paragraphs.

1.3.5.8.1.1 Specification

class SCTRSet

{
SCTRSt();

virtual void GetContainer(SCTRContainer TestSet *pObject);
virtual void GetContainer(SCTRContainerResource * pObject);
virtual SCTRTestSet* MyTestSet();

~SCTRSet();

H
1.35.8.1.2 SCTRSet
The SCTRSet constructor will create a Set instance that can provide information in the entire local SCT.

1.3.5.8.1.2.1 Definition
SCTRSet()

Arguments: N/A
Return value: N/A

System Management CSCI 19 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.1.3 ~SCTRSet

The ~SCTRSet destructor will destroy a Set instance. This destroys only information created for the using
application. The SCT is not affected by this destructor.

1.3.5.8.1.3.1 Definition
~SCTRSet()

Arguments: N/A
Return value: N/A

1.3.5.8.1.4 GetContainer
The GetContainer API provides the Test Set Container or the Resource Container object within a Set.

1.3.5.8.1.4.1 Definition

void GetContainer(SCTRContainer TestSet *pObject)
void GetContainer(SCTRContainerResource * pObject);

Arguments: pObject is a pointer to the type of container object needed.
Return value; N/A

1.358.1.5 MyTestSet
The GetMy API providesthe Test Set object within a Set where the requester resides.

1.3.5.8.1.5.1 Definition
VRTestSet * MyTestSet()

Arguments: N/A
Return value: A pointer to the requester’s Test Set object containing their Test Set information.

1.3.5.8.1.6 Examples
#include” SCTRAPI.h"

SCTRTestSet *pPMyTestSet; /I aTest Set object pointer.

SCTRContainerTestSet *pTestSetContainer; /I aTest Set Container object pointer.

SCTRSet *SCT = new SCTRSet; /I dlocates a Set object called SCT.

pMyTestSet = SCT.MyTestSet(); /I retrieve the requester’s Test Set.
SCT.GetContainer(pTestSetContainer); /I retrieve a container with a collection of Test Sets.
delete SCT; /I remove the allocated Set object.

1.3.5.8.2 Class SCTRTestSet

The SCTRTestSet provides aread only interface for the retrieval of information visible to the Test Set. Its
interface is much the same as the SCTRSet interface with a couple additions. Similar to the SCTRSet
interface, this interface provides methods that allow access to personal information such as its Subsystem,
its Resource, its Name, etc. Additionally, access to a container is provided having iteration methods
allowing the ability to visit all Subsystems, Resources, or Gateways within the Test Set. Thisinterface
may be used through the SCTRSet class or if constructed, will provide the Test Set the requester is

System Management CSCI 20 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

currently residing in. A definition of the available methods as well as examples are shown in the
proceeding paragraphs.

1.3.5.8.2.1 Specification

class SCTRTestSet
{
SCTRTestSet();
virtual void GetContainerAllocated(SCTRContainerResource *pObject);
virtual void GetContainerAllocated(SCTRContainerGateway *pObject);
virtual void GetContainerAllocated(SCTRContainerGroup *pObject);
virtual void GetContainerlnUse(SCTRContainerResource *pObject);
virtual void GetContainerlnUse (SCTRContai nerGateway *pObject);
virtual void GetContainerlnUse (SCTRContainerGroup *pObject);

virtual void GetContainer(SCTRContainerSubsystem *pObject);
virtual SCTRSubsystem* MySubsystem();
virtual SCTRResource* MyResource();
virtual SCTRGateway* MyGateway();
virtual SCTRGroup* MyGroup();
virtual NAMETY PE Name();
~SCTRTestSet();

H

1.35.8.2.2 SCTRTestSet

The SCTRTestSet constructor will create a Test Set instance that only has information pertinent to the
requester, i.e., the Test Set they belong to.

1.3.5.8.2.2.1 Definition
SCTRTestSet()

Arguments: N/A
Return value: N/A

1.35.8.2.3 ~SCTRTestSet
The ~SCTRTestSet destructor will destroy a Test Set instance.

1.3.5.8.2.3.1 Definition
~SCTRTestSet()

Arguments: N/A
Return value: N/A

1.3.5.8.2.4 GetContainer
The GetContainer APIs provide the requested Container object within a Test Set.

1.3.5.8.2.4.1 Definition

void GetContainerAllocated(SCTRContainerResource *pObject);
void GetContainerAllocated(SCTRContai nerGateway *pObject);

void GetContainerAllocated(SCTRContai nerGroup *pObject);

void GetContainerlnUse(SCTRContainerResource *pObject);

void GetContainerinUse (SCTRContainerGateway *pObject);

void GetContainerlnUse (SCTRContainerGroup *pObject);
System Management CSCI 21 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

void GetContainer(SCTRContai ner Subsystem *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value; N/A

1.35.8.25 MySubsystem
The MySubsystem API provides a subsystem object containing local subsystem information.

1.3.5.8.2.5.1 Definition
SCTRSubsystem* MySubsystem()

Arguments: N/A
Return value: A pointer to the requester’ s Subsystem object containing their Subsystem information.

1.3.5.8.2.6 MyResource
The MyResource API provides aresource object containing local resource information.

1.3.5.8.2.6.1 Definition
SCTRResource* MyResource()

Arguments: N/A
Return value: A pointer to the requester’ s Resource object containing their Resource information.

1.3.5.8.2.7 MyGroup
The MyGroup API provides a group object containing local group information.

1.3.5.8.2.7.1 Definition
SCTRGroup* MyGroup()

Arguments: N/A
Returnvalue: A pointer to the requester’s Group object containing their Group information.

1.3.5.8.2.8 Name
The Name API provides the Name of a Test Set object.

1.3.5.8.2.8.1 Definition
NAMETY PE Name()

Arguments: N/A
Return value: The name of this Test Set.

1.3.5.8.2.9 Example(s)
#include” SCTRAPI.h"

SCTRSubsystem *pMySubsystem; /I a Subsystem object pointer.

SCTRResource *pMyResource; /I a Resource object pointer.

SCTRGateway *pMyGateway; /I a Gateway object pointer.

SCTRGroup *pMyGroup; /I a Group object pointer.

SCTRContainerSubsystem *pSubsystemContainer; // a Subsystem Container object pointer.
SCTRContainerResource * pResourceContainer; /I a Resource Container object pointer.

System Management CSCI 22 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

SCTRContainerGateway *pGatewayContainer; /I a Gateway Container object pointer.
SCTRContainerGroup *pGrouptContainer; /I a Group Container object pointer.
NAMETY PE TestSetName; /l the name of thistest set.

SCTRTestSet *MyTestSet = new SCTRTestSet; /I dlocates a Test Set object called SCT that contains
/I the requester’s Test Set information..

TestSetName = MyTestSet.Name(); /I retrieve the requester’ s Test Set name.
PMySubsystem = MyTestSet.MySubsystem(); /I retrieve the requester’ s Subsystem.
pMyResource = MyTestSet.MyResource(); /I retrieve the requester’ s Resource.
pMyGateway = MyTestSet. MyGateway(); /I retrieve the requester’ s Gateway.
pMyGroup = MyTestSet.MyGroup(); /I retrieve the requester’ s Group.

MyTestSet.GetContainer(pSubsystemContainer); // retrieve a container with a collection of
Subsystems
/I known by the requester’s Test Set.
MyTestSet.GetContainerlnUse(pResourceContainer); /I retrieve a container with the collection of
/I Resources currently in use by the Test Set.
MyTestSet.GetContainerlnUse(pGatewayContainer); /I retrieve a container with a collection of
/I Gateways in use by the requester’s Test
/I Set.
MyTestSet.GetContainerAllocated(pGroupContainer); /I retrieve a container with a collection of
/I Groups allocated to the requester's Test
/I Set.

delete MyTestSet; /I remove the allocated Test Set object.

1.3.5.8.3 SCTRGroup

The SCTRGroup provides aread only interface for the retrieval of information visible to the Group. Note
that constructor(s) and a destructor are not provided as an interface to thisclass. It is designed to be
utilized through the other classes. A definition of the available methods as well as examples are shown in
the proceeding paragraphs.

1.3.5.8.3.1 Specification

class SCTGroup

{
virtual void GetContainer(SCTRContainerResource *pObject);

virtual NAMETY PE Name();
b

1.3.5.8.3.2 GetContainer

The GetContainer API provides the Resource Container object within a Group. Theitemsin the
container are only those items which belong to the group requesting the container.

1.3.5.8.3.2.1 Definition
void GetContainer(SCTRContainerResource *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value; N/A

1.3.5.8.3.3 Name

System Management CSCI 23 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

The Name API provides the Name of a Group object.

1.3.5.8.3.3.1 Definition
NAMETY PE Name()

Arguments: N/A
Returnvalue: The name of this Subsystem.

1.3.5.8.3.4 Example(s)
#include” SCTRAPI.h"

SCTRContainerResource * pResourceContainer; /I aProcess Container object pointer.
NAMETYPE GroupName; /I the name of this test set.

SCTRTestSet *SCT = new SCTRTestSet; /I dlocates a Test Set object called SCT that
/I contains the requester’s Test Set
/[information..

pMyGroup = SCT.MyGroup(); /I retrieve the requester’ s Group.

(SCT.MyGroup())->GetContainer(pResourceContainer); // retrieve a container with a collection of
processes

/I known by the requester’ s Subsystem.
GroupName = (SCT.MyGroup())->Name(); /I retrieve the requester’ s subsystem name.

delete MyTestSet; /I remove the allocated Test Set object.

1.3.5.8.4 Class SCTRComputer

The SCTRComputer provides an interface to a computer’ s physical attributes. Note that constructor(s)
and a destructor are not provided as an interface to this class. It is designed to be utilized through the
other classes. A definition of the available methods as well as examples are shown in the proceeding

paragraphs.

1.3.5.8.4.1 Specification
class SCTRComputer

{
virtual SERIALNUMTY PE Serial Number();
b

1.3.5.8.4.2 SerialNumber

The Serial Number API provides the serial number of the physical computer which aresource isresiding
on.

1.3.5.8.4.2.1 Definition
SERIALNUMTY PE Serial Number()

Arguments: N/A
Returnvalue: A value of SERIALNUMTY PE will be returned containing the serial number of this
computer object.

System Management CSCI 24 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.4.3 Example(s)

The following example assumes that a Test Set object has been created (see the SCRTestSet class
examples) and is called SCT.

#include” SCTRAPI.h"

SERIALNUMTY PE serialNum;

seriadlNum = ((SCT.MyResource())->ResidingOn())->Seria Number(); // retrieve the requestor’ s computer
/I serial number.

1.3.5.8.5 SCTRResource

The SCTRResource provides aread only interface for the retrieval of information visible to a Resource
within a Test Set. Note that constructor(s) and a destructor are not provided as an interface to this class.
It is designed to be utilized through the other classes. A definition of the available methods as well as
examples are shown in the proceeding paragraphs.

1.3.5.8.5.1 Specification
class SCTResource

{
virtual void GetContainer(SCTRContainerAttachedTo *pObject);
SCTRSubsystem* Executing();
HOSTNAMETY PE HostName();
IPTYPE RTCNPrimaryl PAddress();
IPTY PE RTCNBackupl PAddress();
IPTY PE DCNPrimaryl PAddress();
IPTY PE DCNBackupl PAddress();
REFDESTY PE ReferenceDesignator();
SCTRComputer* ResidingOn();
IDTY PE PhysicalID();

H

1.3.5.8.5.2 GetContainer

The GetContainer API provides the AttachedTo Container object within a Subsystem providing the
ability to access the various connections a resource may have (LDB, GSE, etc).

1.3.5.8.5.2.1 Definition
void GetContainer(SCTRContainerAttachedTo *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value; N/A

1.3.5.8.5.3 Executing
The Executing API provides the Subsystem executing on this particular Resource.

1.3.5.8.5.3.1 Definition
SCTRSubsystem* Executing()

System Management CSCI 25 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Arguments: N/A
Return value: Returns a pointer to the Subsystem that this Resource is currently executing.

1.3.5.8.5.4 HostName
The HostName API provides the Host Name of a Resource object.

1.3.5.8.5.4.1 Definition
HOSTNAMETY PE HostName()

Arguments: N/A
Return value: Returns the name of the host where this Resource resides.

1.3.5.8.5.5 RTCNPrimarylPAddress
The RTCNPrimaryl PAddress API provides the IP Address on the Primary RTCN of a Resource object.

1.3.5.8.5.5.1 Definition
IPTY PE RTCNPrimaryl PAddress()

Arguments: N/A
Returnvalue: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.6 RTCNBackuplPAddress
The RTCNBackupl PAddress API provides the IP Address on the Backup RTCN of a Resource object.

1.3.5.8.5.6.1 Definition
IPTY PE RTCNBackupl PAddress()

Arguments: N/A
Returnvalue: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.7 DCNPrimaryl PAddress
The DCNPrimaryl PAddress API provides the IP Address on the Primary DCN of a Resource object.

1.3.5.8.5.7.1 Definition
IPTY PE DCNPrimaryl PAddress()

Arguments: N/A
Returnvalue: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.8 DCNBackuplPAddress
The DCNBackupl PAddress API provides the IP Address on the Backup DCN of a Resource object.

1.3.5.8.5.8.1 Definition
IPTY PE DCNBackupl PAddress()

Arguments: N/A
Returnvalue: The IP address of the requested network for this Resource is returned.

1.3.5.8.5.9 ReferenceDesignator
The ReferenceDesignator API provides the Reference Designator of a Resource object.
System Management CSCI 26 12/15/972:35 PM

Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.5.9.1 Definition
REFDESTY PE ReferenceDesignator()

Arguments: N/A
Return value:

1.3.5.8.5.10 ResidingOn

The reference designator for this Resource is returned.

The ResidingOn API provides a Computer object on which a Resource object resides.

1.3.5.8.5.10.1 Definition
SCTRComputer* ResidingOn()

Arguments: N/A
Return value:

1.3.5.8.5.11 Physica ID

The ID API provides the Physical 1D of a Resource object.

1.3.5.8.5.11.1 Definition
IDTYPE PhysicallD()

Arguments: N/A
Return value: The ID of this Resource.

1.35.85.12 Example(s)
#include’ SCTRAPI.h"

SCTRComputer *pMyComputer;
SCTRContainerAttachedTo *pConnections,

for my

HOSTNAMETY PE HostName;
IPTYPE PrimaryRTCN;
IPTYPE BackupRTCN;
IPTYPE PrimaryDCN;
IPTYPE BackupDCN;
REFDESTY PE MyRefDes;
IDTYPE Resourceld;

SCTRTestSet *SCT = new SCTRTestSet;

pMyComputer = (SCT.MyResource())->ResidingOn();
(SCT.MyResource())->GetContainer(pConnections);
processes

MyRefDes
HostName = (SCT.MyResource())->HostName();
Resourceld = (SCT.MyResource())->Physcial 1 D();

System Management CSCI 27
Redundancy Management CSC
Version Thor DP3.0

= (SCT.MySubsystem())->ReferenceDesignator();

A Computer object pointer where this Resource resides is returned.

/I my computer object pointer.
/I an AttachedTo Container object pointer

/I resource.
/I the host name of my resource.
/I my resourcesip for the primary rtcn.
/I my resources ip for the backup rtcn.
/I my resourcesip for the primary den.
/I my resources ip for the backup dcn.
/I my resources reference designator.

/I my resourcesid.

/I dlocates a Test Set object called SCT that
/I contains the requester’s Test Set
[l information..

/I retrieve the requester’ s computer.
/I retrieve a container with a collection of

/I known by the requester’ s Subsystem.

/I retrieve the requester’ sref des.
/I retrieve the requester’ s host name.

/I retrieve the requester’ s subsystem ID.

12/15/972:35 PM

/I retrieves the various network ip address.

PrimaryRTCN = (SCT.MyResource())->RTCNPrimaryl PAddress();
BackupRTCN = (SCT.MyResource())->RTCNBackupl PAddress();
PrimaryDCN = (SCT.MyResource())->DCNPrimaryl PAddress();
BackupDCN = (SCT.MyResource())->DCNBackupl PAddress();

delete MyTestSet; /I remove the allocated Test Set object.

1.3.5.8.6 Class SCTRSubsystem

The SCTRSubsystem provides aread only interface for the retrieval of information visible to a Subsystem
within a Test Set. Note that constructor(s) and a destructor are not provided as an interface to this class.
It is designed to be utilized through the other classes. A definition of the available methods as well as
examples are shown in the proceeding paragraphs.

1.3.5.8.6.1 Specification

class SCTRSubsystem

{
virtual void GetContainer(SCTRContainerProcess *pObject);

virtual CLASSIFICATIONTY PPE Classification();
virtual CURRENTSTATETY PE CurrentState();
virtual SCTRResource* ExecutingOn();

virtual SCTRGroup* MyGroup();

virtual NAMETY PE Name();

virtual ROLETY PE Role&();

virtual boolean SwitchoverEnabled();

virtual IDTY PE LogicallD();

1

1.3.5.8.6.2 Classfication
The Classification API provides the type of a Subsystem object, i.e., CCP, DDP, CCWS, GATEWAY, etc.

1.3.5.8.6.2.1 Definition
CLASSIFICATIONTY PE Clasification()

Arguments: N/A
Returnvalue: The classification of this Subsystem (CCP, DDP, CCWS, GATEWAY, etc.)

1.3.5.8.6.3 CurrentState
The CurrentState API provides the state of a Subsystem object, i.e., COMMUNICATING, GO, etc.

1.3.5.8.6.3.1 Definition
CURRENTSTATETYPE CurrentState()

Arguments: N/A
Returnvalue: The current Subsystem’s current state (COMMUNICATING, GO, etc.)

1.3.5.8.6.4 ExecutingOn
The ExecutingOn API provides the Resource object of where this Subsystem is executing.

System Management CSCI 28 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.3.5.8.6.4.1 Definition
SCTRResource* ExecutingOn()

Arguments: N/A
Returnvalue: A pointer to the requester’ s Resource object containing its Resource information.

1.3.5.8.6.5 GetContainer
The GetContainer API provides the Process Container object within a Subsystem.

1.3.5.8.6.5.1 Definition
void GetContainer(SCTRContainerProcess *pObject)

Arguments: pObject is a pointer to the type of container object needed.
Return value; N/A

1.3.5.8.6.6 Name
The Name API provides the Name of a Subsystem object.

1.3.5.8.6.6.1 Definition
NAMETY PE Name()

Arguments: N/A
Returnvalue: The name of this Subsystem.

1.3.5.8.6.7 Role
The Role API provides the role of a Subsystem object, i.e., ACTIVE, STANDBY, HOTSPARE

1.3.5.8.6.7.1 Definition
ROLETYPE Role()

Arguments: N/A
Returnvalue: Theroll of this Subsystem (ACTIVE, STANDBY, HOTSPARE)

1.3.5.8.6.8 SwitchoverEnabled
The SwitchoverEnabled API provides a mechanism to determine if the current Subsytem isin switchover.

1.3.5.8.6.8.1 Definition
boolean SwitchoverEnabled()

Arguments: N/A
Return value: boolean (TRUE, FALSE)

1.3.5.8.6.9 LogicdlD
The ID API providesthe logical ID of a Subsystem object.

1.3.5.8.6.9.1 Definition
IDTYPE LogicallD()

Arguments: N/A
Returnvalue: TheID of this Subsystem.

System Management CSCI 29 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1.35.8.6.10 Example(s)
#include’ SCTRAPI.h"

SCTRResource *pMyResource;

SCTRContainerProcess *pProcessContainer;

NAMETYPE SubsystemName;
CURRENTSTATETYPE SubsystemState;
CLASSIFICATIONTY PE SubsystemType;

IDTYPE Subsystemid;

SCTRTestSet *SCT = new SCTRTestSet;

/I a Resource object pointer.

/I aProcess Container object pointer.

/l the name of thistest set.

/I the current state of this subsystem.

/I the classification of this subsystem.
/l the id of this subsystem.

/I dlocates a Test Set object called SCT that
/I contains the requester’s Test Set
/[information..

pMyResource = (SCT.MySubsystem())->ExecutingOn(); // retrieve the requester’ s Resource.

(SCT.MySubsystem())->GetContainer(pProcessContainer); // retrieve a container with a collection of

/I processes known by the requester’s
/I Subsystem.

SubsystemState = (SCT.MySubsystem())->CurrentState(); // retrieve the requester’s current state.

SubsystemName = (SCT.MySubsystem())->Name();

/I retrieve the requester’ s subsystem name.

Subsystemid = (SCT.MySubsystem())->Logical 1D(); /I retrieve the requester’ s subsystem ID.

delete MyTestSet;

1.3.5.8.7 SCTRProcess

/I remove the allocated Test Set object.

The SCTRprocess provides aread only interface for the retrieval of information visible to a Process within
a Subsystem. Note that constructor(s) and a destructor are not provided as an interface to thisclass. Itis
designed to be utilized through the other classes. A definition of the available methods as well as

examples are shown in the proceeding paragraphs.

1.3.5.8.7.1 Specification
class SCTRProcess

{
virtual boolean Ciritical();

virtual CURRENTSTATETY PE CurrentState();

virtual NAMETY PE Name();
b

1.3.5.8.7.2 Critical

The Critical APl determinesif the Processis critical.

1.3.5.8.7.2.1 Definition
boolean Critical()

Arguments: N/A

Return value: A boolean indicating the criticality of the process will be returned i.e., TRUE/Critical

FALSE/Not Critical

1.3.5.8.7.3 CurrentState

System Management CSCI
Redundancy Management CSC
Version Thor DP3.0

30 12/15/972:35 PM

The CurrentState API provides the state of a Subsystem object, i.e., COMMUNICATING, GO, etc.

1.3.5.8.7.3.1 Definition
CURRENTSTATETYPE CurrentState()

Arguments: N/A
Returnvalue: The current state of the process will be returned, i.e., COMMUNICATING, GO, etc.

1.3.5.8.7.4 Name
The Name API provides the Name of a Process object.

1.3.5.8.7.4.1 Definition
NAMETY PE Name()

Arguments: N/A
Returnvalue: The name of the process will be returned of the specified type.

1.3.5.8.7.5 Example(s)

The following example assumes that the user of the process has already retrieved it from its container
owned by its subsystem and has called it pAprocess.

#include” SCTRAPI.h"

NAMETYPE ProcessName;
boolean IsCritical;
CURRENTSTATETYPE ProcessState;

ProcessName = pAprocess->Name();
IsCritical = pAprocess->Critical();
ProcessState = pAprocess->CurrentState();

1.3.5.8.8 SCTW Subsystem

The SCTWSubsystem provides a read/write interface for the retrieval and update of information visible to
a Subsystem within a Test Set. Its read interface is derived from the SCTRSubsystem class therefore refer
to the SCTRSubsystem interface document regarding its use. Note that constructor(s) and a destructor are
not provided as an interface to this class. It is designed to be utilized through the other classes. A
definition of the available methods as well as examples are shown in the proceeding paragraphs.

1.3.5.8.8.1 Specification

class SCTWSubsystem : public SCTRSubsystem
{
virtual void ChangeClassification(CLASSIFICATIONTY PE newClassification);
virtual void ChangeCurrentState(CURRENTSTATETY PE newState);
virtual void ChangeName(NAMETY PE newName);
virtual void ChangeRole(ROLETY PE newRole);
virtual void ChangeSwitchover(boolean value);
virtual void ChangelD(IDTY PE newld);
virtual RETURNTY PE Update();
System Management CSCI 31 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

1

1.3.5.8.8.2 ChangeClassification

The ChangeClassification API provides the ability to modify the classification of a Subsystem object, i.e.,
CCP, DDP, CCWS, GATEWAY, etc.

1.3.5.8.8.2.1 Definition
void ChangeClasification(CLASSIFICATIONTY PE newClassification)

Arguments: newClassification is an argument of type CLASSIFICATIONTY PE (CCP, DDP,
CCWS, GATEWAY, etc.) whereits contents will update the local Subsystem’.
Return value; N/A

1.3.5.8.8.3 ChangeCurrentState

The ChangeCurrentState API provides the ability to modify the current state of a Subsystem object, i.e.,
COMMUNICATING, GO, etc.

1.3.5.8.8.3.1 Definition
void ChangeCurrentState(CURRENTSTATETY PE newState)

Arguments: newState is an argument of type CURRENTSTATETY PE (COMMUNICATING, GO,
etc.) whereits contents will update the local Subsystem®.
Return value; N/A

1.3.5.8.8.4 ChangeName
The ChangeName API provides the ability to modify the current name of a Subsystem object.

1.3.5.8.8.4.1 Definition
void ChangeName(NAMETY PE newName)

Arguments: newName is an argument of type NAMETY PE where its contents will update the local
Subsystemt.
Return value; N/A

1.3.5.8.8.5 ChangeRole

The ChangeRole API provides the ability to modify the current role of a Subsystem object, i.e., ACTIVE,
STANDBY, HOTSPARE.

1.3.5.8.8.5.1 Definition
void ChangeRole(ROLETY PE newRole)

Arguments: newRoleis an argument of type ROLETY PE (ACTIVE, STANDBY, HOTSPARE)
where its contents will update the local Subsystem®.
Return value; N/A

1.3.5.8.8.6 ChangeSwitchover

The ChangeSwtichover API provides the ability to change® the current switchover state of a Subsystem
object.

! A local update only modifies the writeable Subsystem object private members. It does not ater the
contents of the SCT. It isnot until a Subsystem Update that the SCT is updated.

System Management CSCI 32 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

1.3.5.8.8.6.1 Definition
void ChangeSwitchover(boolean value)

Arguments: the new switchover state this subsystem is to change to.
Return value; N/A

1.3.5.8.8.7 ChangelD
The Changel D API provides the ability to change' the current Id of a Subsystem object.

1.3.5.8.8.7.1 Definition
void Changel D(IDTY PE newld)

Arguments: the new Id this subsystem is to change assume.
Return value; N/A

1.3.5.8.8.8 Update
The Update API provides the ahility to update the SCT to the changes made to a Subsystem object.

1.3.5.8.8.8.1 Definition
RETURNTYPE Update()

Arguments: N/A
Return value: A return code of type RETURNTY PE (type definition available through the API) which
identifies if the update was successful or not.

1.3.5.8.8.9 Example(s)
#include” SCTWAPI.h"

NAMETY PE newName; /l the name of thistest set.
CURRENTSTATETYPE newState; /I the current state of this subsystem.
CLASSIFICATIONTY PE newClassification; /I the classification of this subsystem.
IDTYPE newld;

ROLETYPE newRole;

RETURNTYPE updateResult;

... Il appropriate information is stored in the change variables.

SCTRTestSet *SCT = new SCTRTestSet; /I dlocates a Test Set object called SCT that
/I contains the requester’s Test Set
/[information..

(SCT.MySubsystem())->ChangeName(newName); /I change my subsystem name.
(SCT.MySubsystem())->ChangeState(newState); /I change my subsystem state.
(SCT.MySubsystem())->ChangeClassification(newClassification); // change my subsystem

/I classification.

(SCT.MySubsystem())->Changel D(newld); /I change my subsystem
id.
(SCT.MySubsystem())->ChangeRole(newRole); /I change my subsystem role.
(SCT.MySubsystem())->ChangeSwitchover(TRUE); /I change my subsystem
switchover

/I state to in-switchover (TRUE).
System Management CSCI 33 12/15/972:35 PM
Redundancy Management CSC

Version Thor DP3.0

UpateResult = (SCT.MySubsystem())->Update(); /I change my subsystem role.

delete MyTestSet; /I remove the allocated Test Set object.

1.3.5.8.9 SCTRGateway

The SCTRGateway provides aread only interface for the retrieval of information visible to the Gateway.
This object’ s interface is derived from the SCTRSubsystem interface with no additions. Refer to the
SCTRSybsystem interface for definitions and examples on its use.

1.3.5.8.9.1 Specification

class SCTRGateway : public SCTRSubsystem

{
1

1.3.5.8.10 SCTW Gateway

The SCTWGateway provides a read/write interface for the retrieval and update of information visible to
the Gateway. This object’s interface is derived from the SCTWSubsystem interface with no additions.
Refer to the SCTWSybsystem interface for definitions and examples on its use.

1.3.5.8.10.1 Specification

class SCTWGateway : public SCTWSubsystem

{
};

1.3.5.9 System Configuration Table File Formats

The SCT isbuilt from 4 files. Each file is comma delimited and provides information that defines the part
of the system configuration. The format of each of these filesis described below.

1.3.5.9.1 Test Set File

Thisfile specifies the Test Sets that can exist in the systems and the Sets in which these Test Sets exist.
Thisis expected to be used primarily by Set Integrity.
Name: testsets.txt

Format: Comma delimited, all strings are enclosed in double quotes.

Field Type Contents

Test Set Name | String A unique name for atest set. There are no constraints on the
contents of the string.

Example:
"OCR1 Set 1"

"OCR1 Set 2"

1.3.5.9.2 Group File

Thisfile specifies the Groups of Resources that must be allocated to asingle test set. Thisinfomation is
used primarily by Set Integrity to ensure that no group is split across test sets.
Name: groups.txt

Format: Comma delimited, all strings are enclosed in double quotes.

| Field | Type | Contents |
System Management CSCI 34 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Group Name String The Name of the group. This name is unique

Test Set Name | String A unique name for atest set. This name will exactly match a name
inthe Test Set File.

Example:

"VAB Gateways',"OCR1 Set 1"
"SME Gateways',"OCR1 Set 2"
"HMF Gateways',"IDE Set"

1.3.5.9.3 Resource File

Thisfile specifies the parameters for the individual resources in the Set.
Name: resources.txt

Format: Comma delimited, all strings are enclosed in double quotes.

Field Type Contents

Host Name String The commonly used name for the Resource. This hameis unique.

Reference String Thisfield specify the physical location of the resource

Designator

ID Int16 Number that uniquely identifies the resource within the set.

Primary RTCN | String Defines the IP Address to be used by the Resource when

IP Address communicating on the Primary RTCN. Thisfield may be null (for
gateways)

Backup RTCN String Defines the IP Address to be used by the Resource when

IP Address communicating on the Backup RTCN. Thisfield may be null (for
gateways and all processors prior to installation of the backup
RTCN).

Primary DCN String Defines the IP Address to be used by the Resource when

IP Address communicating on the Primary DCN. Thisfield may be null (for
CCWSs)

Backup DCN IP | String Defines the IP Address to be used by the Resource when

Address communicating on the backup DCN. Thisfield may be null (for
CCWSs and al processors prior to the installation of the backup
DCN)

Group String The Group to which this resource belongs

Example:

"IDE_CCPO1","1","1A365","123.123.255.255","123.123.255.255","123.123.255.255" " 123.123.255.255"
"IDE_CCP02","2","1A366","233.233.233.233","233.233.233.233","233.233.233.233" " 233.223.223.223"

"IDE_DDPO1","4","1A399","133.133.133.133","135.13.153.153","111.111.111.111","133.233.233.133",
"IDE_DDP02","3","1A400","233.233.233.233","111.11.111.111","222.222.222.222" " 133.133.133.133",
"IDE_GSEO01","7","2A120","133.233.133.33","22.222.222.222"
"IDE_GSEQ02","6","2A250","144.244.144.44" " 33.33.33.33",,,"VAB Gateways'

1.3.5.9.4 Subsystem File

Thisfile specifies the definition of the Subsystem, including test set membership and assignment of
resources.
Name: subsyst.txt

System Management CSCI 35 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Format: Commadelimited, all strings are enclosed in double quotes. Types other than strings are not
enclosed in quotes

Field Type Contents

ID Int16 Unique identifier for the subsystem. Used asthe CPU ID in the
network message header.

Subsystem String The name of the subsystem being defined. Because thisfile is used

Name by Set Integrity, agiven subsystem name may appear more than
once. The combination of Test Set/Subsystem Name is unique
within thefile.

Role String This string will specify either “ Primary” or “ Secondary”

Switchover Integer When 0, Switchover isdisabled. When 1 it isenabled. No other

Enabled valueisvalid.

Resource Host String The Host Name on which the Subsystem is to execute.

Name

Test Set String Specifies the Test Set for which this mapping isvalid. The Test
Set name will exactly match one of the namesin the test set file.

Example:
1,"CCP1A","Primary",1,"IDE_CCPO1","I DE Set"

2,"CCP1S',"Standby",1,"IDE_CCP02","IDE Set"
3,"GSE1A","Primary",1,"IDE_GSEO1","IDE Set"
4,"GSE1S',"Standby",0,"IDE_GSEO02","IDE Set"
5,"LDB1A","Primary",0,"IDE_GSEOQ1","I DE Set"

System Management CSCI 36 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

Thisisthelast page of the Document

System Management CSCI 37 12/15/972:35 PM
Redundancy Management CSC
Version Thor DP3.0

